0%

leetcode每日一题2020.1.13

684. 冗余连接

一、题目

在本问题中, 树指的是一个连通且无环的无向图。

输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组。每一个边的元素是一对 [u, v] ,满足 u < v,表示连接顶点 uv的无向图的边。

返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v

示例1:

1
2
3
4
5
6
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
1
/ \
2 - 3

示例2:

1
2
3
4
5
6
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
| |
4 - 3

注意:

  • 输入的二维数组大小在 3 到 1000。
  • 二维数组中的整数在1到N之间,其中N是输入数组的大小。

二、题解

并查集

1
2
3
4
5
6
7
8
9
10
11
题解:

在一棵树中,边的数量比节点的数量少 1。如果一棵树有 N 个节点,则这棵树有 N−1 条边。这道题中的图在树的基础上多了一条附加的边,因此边的数量也是 N。

树是一个连通且无环的无向图,在树中多了一条附加的边之后就会出现环,因此附加的边即为导致环出现的边。

可以通过并查集寻找附加的边。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。

• 如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合并这两个顶点的连通分量。

• 如果两个顶点属于相同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间已经连通,因此当前的边导致环出现,为附加的边,将当前的边作为答案返回。
  • 时间复杂度:O(NlogN),其中 N 是图中的节点个数。
  • 空间复杂度:O(N)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
var findRedundantConnection = function (edges) {
const nodesCount = edges.length;
const parent = new Array(nodesCount + 1).fill(0).map((value, index) => index);
for (let i = 0; i < nodesCount; i++) {
const [node1, node2] = edges[i];
if (find(parent, node1) != find(parent, node2)) {
union(parent, node1, node2);
} else {
return edges[i];
}
}
return [0];
};

const union = (parent, index1, index2) => {
parent[find(parent, index1)] = find(parent, index2);
}

const find = (parent, index) => {
if (parent[index] !== index) {
parent[index] = find(parent, parent[index]);
}
return parent[index];
}
万一真有土豪呢